ELECTROHYDRODYNAMIC INSTABILITY IN NEMATIC LIQUID CRYSTAL BORDERING WITH CYLINDRICAL ANODIZED ALUMINUM OXIDE NANOPORES
Sh.O. Eminov, G.F. Ganizade, I.I. Gurbanov, A.R. Imamaliyev, A.X. Karimova, A.A. Rajabli
2024   02   en   p.26-31

ABSTRACT

Using the liquid crystal 4-methoxybenzylidene)-4’-butylaniline (MBBA) as an example, it is shown that in an electrooptic cell where surface of an indium teen oxide (ITO) electrode is coated with cylindrical anodized aluminum oxide (AAO) nanoporous, unwanted current effects such as electrohydrodynamic instabilitiy emerging at high voltages can be avoided, which is important for display applications of liquid crystals with negative dielectric anisotropy.

Keywords: liquid crystal, electrooptic effect, electrohydrodynamic instabilitiy, cylindric nanopore
PACS: 42.70.DF; 61.30.-v; 61.30.Gd; 47.65.-d; 77.55.+f; 77.55.-g; 81.65.Cd

DOI:-

Received: 05.06.2024
Internet publishing: 28.06.2024

AUTHORS & AFFILIATIONS

Ministry of Science and Education of Azerbaijan, Institute of Physics, H. Javid av.131, Baku, AZ1143, Azerbaijan
E-mail: Rahimoglu@mail.ru

Graphics and Images

                   

Fig.1       Fig.2        Fig.3       Fig.4        Fig.5        Fig.6

REFERENCIES

[1]   G.P. Crawford, S. Žumer. Liquid crystals in complex geometry: Formed by polymer and porous networks, Taylor & Francis, 1996, 524 p.
[2]   M. Kleman, O.D. Lavrentovich. Introduction to Soft Matter Physics: An Introduction, Springer-Verlag, 2003, 664 p.
[3]   R. Stannarius, F. Kremer. Liquid Crystals in Confining Geometries, Lecture Notes in Physics, 2004, v.634, pp.301-336.
[4]   Y. Fomin. Liquid. Crystal Defects in Confined Geometries, Supervisor Report, 2019, 43p.
[5]   J. Hardouin. Active Liquid Crystals in Confinement, PhD Thesis, 2019, 227p.
[6]   Y. Gao. Liquid Crystal Confined in Silica Nanoporous, Ph. D Thesis, The University of Tennessee, 2005
[7]   Z. Sumera, F. A. Fernandez, A. Striolo. Liquid crystal droplets under extreme confinement probed by a multiscale simulation approach, Liquid Crystals, 2021, v. 48, No. 13, 1827–1839
[8]   Y. Li, JJ-Y Suen, E. Prince, et al. Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun. 2016; 7(1):1–11.
[9]   M. Kuzma, M.M. Labes. Liquid Crystals in Cylindrical Pores: Effects on Transition Temperatures and SinguIarities, Mol. Cvsr. Liq. Cryst., 1983, v. 100, 103-110.
[10]  E. Prince, Y. Wang, I. Smalyukh, E. Kumacheva. Cylindrical Confinement of Nanocolloidal Cholesteric Liquid Crystal, J. Phys. Chem. B, 2021, 125, 8243-8250.
[11]  F.M. Aliev, G.P. Sinha. Heterogenius mirocomposite materials based on porous matrices and liquid crystals - Materials Research Society Symposium Proceedings. Vol. 431, pp. 505-510.
[12]  F.M. Aliev, Z. Nazario, G.P. Sinha. Broadband dielectric spectroscopy of confined liquid crystals, Journal of Non-Crystalline Solids 305 (2002) 218–225.
[13]  K. Sentker, A. Yildirim, M. Lippmann, A.W. Zantop, F. Bertram, T. Hofmann, O.H. Seeck, A.V. Kityk, M.G. Mazza, A. Schönhals, P. Huber. Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials, Nanoscale, 2019, 11, 23304-23317.
[14]  De Gennes P. G and J. Prost. The Physics of Liquid Crystals, Oxford University Press, New York 1993.
[15]  L. Blinov. Structure and Propertis of liquid Crystals, Springer, Heidelberg, London, New York, -2011. p.458.
[16]  L.M. Blinov, V.G. Chigrinov. Electrooptic Effects in Liquid Crystal Materials Springer, Science & Business Media, New York, -1996. p.464.
[17]  D. Coates. Polymer-dispersed Liquid Crystals, J. MATER. CHEM., 1995, 5(12), 2063-2072 2063
[18]  P.S. Drzaic, Electro-Optics of Polymer-Dispersed Liquid Crystal Materials, Materials Research Society Symp. Proc. Vol. 425 01996, 259-268.
[19]  A. K. Jain, R.R. Deshmukh. An Overview of Polymer-Dispersed Liquid Crystal Composite Films and Their Applications, DOI: http://dx.doi.org/10.5772/intechopen.91889
[20]  X.H. Wang, T. Akahane, H. Orikasa and T. Kyotani, Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films. Appl. Phys. Lett. 200791 011908
[21]  A.A. Lutich, S.V. Gaponenko, N.V. Gaponenko, L.S. Molchan, V.A. Sokol and A.V. Parkhutik. Anisotropic light scattering in nanoporous materials: a photon density of states effect Nano Lett V 2004. 4, 1755–1782.
[22]  Sh.O. Eminov, A.M. Hashimov, A.A. Rajabli, A.X. Karimova, Integration of Electrical Energy Storage Devices with Photovoltaic Solar Cells in One Hybrid System. In: S. Krishnamoorthy, K. Iniewski, ((eds) Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications. Springer, Cham. (2024). https://doi.org/10.1007/978-3-031-42700-8_18
[23]  U. Cigane , A. Palevicius, G. Janusas , Vibration-Assisted Synthesis of Nanoporous Anodic Aluminum Oxide (AAO) Membranes, Micromachines (Basel), 2022, 13(12):2236. doi: 10.3390/mi13122236.
[24]  A. Ganapathi, P. Swaminathan and L. Neelakantan. Anodic Aluminum Oxide Template Assis¬ted Synthesis of Copper Nanowires using a Galvanic Displacement Process for Electrochemical Denitrification ACS Appl. Nano Mater. 2019, 2, 9, 5981–5988.
[25]  S. Liu J. Tian, W. Zhang. Fabrication and application of nanoporous anodic aluminum oxide: A review, Nanotechnology, 2021,32(22), 1-18, DOI: 10.1088/1361-6528/abe25f
[26]  T. Maeda and K. Hiroshima. Vertically aligned nematic liquid crystal on anodic porous alu-mina, Japan. J. Appl.Phys., 2005, 43, L1004–6.
[27]  T.T Tang, C.Y Kuo, R.P. Pan, J.M. Shieh and C.L. Pan. 2009. Strong vertical alignment of liquid crystal on porous anodic aluminum oxide film J. Disp. Technol. 5 350–4.
[28]  Ch. Hong, T.T. Tang, C.Y. Hung, R.P. Pan and W. Fang. Liquid crystal alignment in nanopo-rous anodic aluminum oxide layer for LCD panel applications, Nanotechnology, 21,2010, 285201-285210.
[29]  T.T. Tang, Ch.Y. Hung, R.P. Pan, Ch. Hong, W. Fang. Vertical Alignment of Liquid Crystal on ITO Glass with Anodic Aluminum Oxide Thin Film, Mol. Cryst. Liq. Cryst., 2011, Vol. 543: pp. 926–934.
[30]  T.D. Ibragimov, A.R. Imamaliyev, G.M. Bayramov. Influence of barium titanate particles on electro-optic characteristics of liquid crystalline mixture H-37,Optik, 2016, 1217-1220.