HIGH PRESSURE EFFECT ON 3D TOPOLOGICALLY NONTRIVIAL SYSTEMS WITH MAGNETIC IMPURITIES
I.K. Kamilov1, L.A. Saypulaeva1, N.V. Melnikova2, A.I. Ril3, S.F. Marenkin3,4, Sh.M. Aliev1
2024   04   en   p.48-54

ABSTRACT

The main results of investigations on the electrical and magnetoresistance (MS) of a composite material consisting of 70 mol. % Dirac half-metal Cd3As2 and of 30 mol. % ferromagnetic MnAs are presented at pressures up to 50 GPa in a high-pressure chamber with diamond anvils of the “rounded cone-plane” type, as well as magnetization at hydrostatic pressures up to 6 GPa in a “Toroid” high-pressure chamber, both in the room temperature mode and in the temperature range from 180 to 350 K at atmospheric pressure. A 4:1 methanol-ethanol liquid is used as the pressure transmitting agent. The elemental analysis of Cd3As2 composite + 30 mol% MnAs, reveals that most of the volume is Cd3As2 phase. The share of MnAs phase inclusions is less than 5%. The presence of a significant non-mixing region of the Cd3As2 and MnAs melt phases is the peculiarity of Cd3As2+MnAs. With increasing the pressure, a negative magnetic resistance (MR) is observed in the whole considered baric region. The maximum of the negative MR is manifested in the pressure region of 22-26 GPa. Further increase in pressure up to a maximum pressure produces several extrema on the ΔR/R0(P) curve, and the negative MR does not exceed 4%. In the pressure drop mode from 50 GPa, the baric dependence ΔR/R0(P) is characterized by inversion of the MR sign: the negative MR is replaced by a positive one at about 40 GPa, and the maximum value of the positive MR ~5.3 % is observed near 20 GPa. Signs of instability of the Cd3As2 monoclinic structure due to its partial decomposition during decompression are determined. The prevailing negative MR over a wide pressure range of 16-50 GPa is discussed to be irrespective of the MnAs clusters effect, since the magnetic transformation observed in MnAs occurs at pressures lower than 1 GPa, and the magnetization decreases with further pressure increase up to 5 GPa.

Keywords: electric resistance, clusters, high pressures, magnetoresistance.
DOI:10.70784/azip.1.2024448

Received: 27.11.2024
Internet publishing: 11.12.2024

AUTHORS & AFFILIATIONS

1. Institute of Physics, DFRC RAS, 367015, Russia, Republic of Dagestan, 94 M. Yaragskogo str., Makhachkala, Russia.
2. Ural Federal University, Institute of Natural Sciences and Mathematics Yekaterinburg, Russia 620002
3. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Moscow 119991
4. National University of Sciences and Technology “MISIS”, Moscow 119991
E-mail: l.saypulaeva@gmail.com

Graphics and Images

                     

    Fig.1-2-3-4    Fig.5-6-7-8-9

[1]   E.K. Arushanov. II3V2 Compounds and alloys, Prog. Crystal Growth and Charact. 1992, Vol.25, pp. 131-201
[2]   T. Schumann, М. Goyal, H. Kim. [et al.]. Molecular beam epitaxy of Cd3As2 on a III-V substrate. APL Materials. – 2016. – V. 4. – P. 126110.
[3]   S.F. Marenkin, V.M. Trukhan. Phosphides, arsenides of zinc and cadmium. - Minsk, 2010. - С. 224
[4]   Z. Cheng, Z. Tong, L. Sihang. [et al.]. Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2. Chin. Phys. B. – 2016. – V. 25, № 1. – P. 017202.
[5]   S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, R.J. Cava. Experimental Realization of a Three-Dimensional Dirac Semimetal. Phys. Rev. Lett. 113, (2014) 027603.
[6]   H. Lanpo, J. Yating, Z. Sijia [et al.]. Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2. Quantum Materials. – 2016. – V. 14. – P. 16014.
[7]   M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, F. Chou, M.Z. Hasan. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications. 2014. – Т. 5. № 1. – C. 3786. DOI. 10.1038/ncomms4786.
[8]   Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Physical Review B. 2013. – Т. 88. – №. 12. – C. 125427. – DOI. 10.1103/PhysRevB.88.125427.
[9]   A.J. Rosenberg, T.C. Harman. Cd3As2—A Noncubic Semiconductor with Unusually High Electron Mobility // Journal of Applied Physics. 1959. – Т. 30. – № 10. – C. 1621–1622. – DOI. 10.1063/1.1735019.
[10]  Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng, D. Prabhakaran, S.K. MO, H. Peng, P. Dudin, Y.L. Chen. A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13 (2014) 677–681, https://doi.org/10.1038/ nmat3990.
[11]  X. Wan, A.M. Turner, A. Vishwanath. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83 (2011) 205101, https://doi.org/10.1103/PhysRevB.83.205101.
[12]  Hong Lu, Xiao Zhang, Yi Bian, Shuang Jia. Topological phase transition in single crystals of (Cd1− xZnx)3As2, Sci. Rep. 7 (2017) 3148, https://doi.org/10.1038/ s41598-017-03559-2.
[13]  A.I. Ril, S.F. Marenkin. Cadmium Arsenides: Structure, Synthesis of Bulk and Film Crystals, Magnetic and Electrical Properties (Review) / Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2005. DOI: 10.1134/S0036023621140059.
[14]  I.F. Gribanov, A. Zavadsky, A. Sivachenko. P. Low-temperature magnetic transformations in orthorhombic manganese arsenide. / FTN, 1979. Т. 5. № 10. С. 1219.
[15]  C. Spezzani, E. Ferrari, E. Allaria, F. Vidal, A. Ciavardini, R. Delaunay, F. Capotondi, E. Pedersoli, M. Coreno, C. Svetina, L. Raimondi. Magnetization and microstructure dynamics in Fe/MnAs/GaAs (001): Fe magnetization reversal by a femtosecond laser pulse. / Phys. Rev. Lett. 2014. V.113. № 24. P. 247202. DOI: 10.1103/PhysRevLett.113.247202.
[16]  J. Hubmann, B. Bauer, H.S. Körner, S. Furthmeier, M. Buchner, G. Bayreuther, F. Dirnberger, D. Schuh, C.H. Back, J. Zweck, E. Reiger. Epitaxial growth of room-temperature ferromagnetic MnAs segments on GaAs nanowires via sequential crystallization. Nano Lett. 2016. V. 16. № 2. P.900. DOI: 10.1021/acs.nanolett.5b03658.
[17]  V.M. Novotortsev, S.F. Marenkin, I.V. Fedorchenko, A.V. Kochura. Physical and chemical bases of synthesis of new ferromagnetics from chalcopyrite AIIBIVCV2. / Inorganic chemistry Journal. 2010. Т. 55. №. 11. С. 1868-1880. DOI: 10.1134/S0036023610110136
[18]  A.I. Ril, A.V. Kochura, S.F. Marenkin. Proceedings of South-West State University. Series: Technics and technologies 7, 120 (2017).
[19]  L.F. Vereshchagin, E.N. Yakovlev, B.V. Vinogradov, G.N. Stepanov, K.Kh. Bibaev, T.I. Alaeva, V.P. Sakun. High Temp.–High Press. 6, 499 (1974).
[20]  A.N. Babushkin, G.I. Pilipenko, F.F. Gavrilov. J. Phys.: Condens. Matter. 5, 8659 (1993).
[21]  A.N. Babushkin. High Press. Res. 6, 349 (1992).
[22]  L.G. Khvostantsev, L.P. Vereshchagin, A.P. Novikov, High Temp.-High Pressure, 9(6), 637 (1977).
[23]  A.Yu. Mollaev, L.A. Saipulaeva, R.K. Arslanov, S.F. Marenkin. Inorganic Materials, 37(4), 405 (2001)].
[24]  A.G. Alibekov, A.Yu. Mollaev, L.A. Saipullaeva, S.F. Marenkin, I.V. Fedorchenko, A.I. Ril. Hall effect and magnetoresistance in the Cd3As2 + MnAs (30%) composite at high pressure // Journal of Inorganic Chemistry, 2017, Vol. 62, № 1, pp. 1-5.
[25]  N.V. Melnikova, A.V. Tebenkov, G.V. Sukhanova, A.N. Babushkin, L.A. Saipulaeva, V.S. Zakhvalinsky, S.F. Gabibov, A. G. Alibekov, A. Yu. Mollaev. Thermoelectric properties of ferromagnetic semiconductor based on Dirac semimetal Cd3As2 at high pressure // Solid State Physics, 2020, Vol. 62, Iss. 6, 03,05,11.
[26]  N. Menyuk, J.A. Kafalas, K. Dwight, and J.B. Goodenough. Phys. Rev. 177, 942 (1969).
[27]  F. Andresen, H. Fjellvåg, B. Lebech. 43(2), 158-160 (1984).
[28]  N. Mattoso, M. Eddrief, J. Varalda, A. Ouerghi, D. Demaille, V. H. Etgens, and Y. Garreau. Phys. Rev. B 70, 115324 (2004).