THE MAGNETIC PROPERTIES OF ZnSe:TM (Cr, V): FIRST-PRINCIPLES STUDY
1V.N. Jafarova, 2Sevda Rzayeva
2024   04   en   p.66-69

ABSTRACT

Using spin polarized density functional theory with the local spin density approximation and Hubbard U corresctions, we have performed our simulations on ZnSe supercell compound, doped with 3d transition metals and vacancy positions. Investigation of electronic structures of Zn1-xTMxSe systems show additionally peaks in the vicinity of Fermi level derived from TM2+ 3d orbitals. The computed spin moments for TMxZn1-xSe alloys found of 3.0 µB for
VxZn1-xSe, 4.0 µB for CrxZn1-xSe systems. The base contribution to the magnetization of systems comes from TM d-states. First-principles simulations of the total energies for ferromagnetic and antiferromagnetic phases show FM phase stability of VxZn1-xSe, CrxZn1-xSe systems.

Keywords: ZnSe:TM, ferromagnetic, antiferromagnetic, metallic, half-metallic
DOI:10.70784/azip.1.2024466

Received: 05.12.2024
Internet publishing: 20.12.2024

AUTHORS & AFFILIATIONS

1,2. Ministry of Science Institute of Physics and Education Republic of Azerbaijan, H. Cavid avenue. 131, 1073, Baku, Azerbaijan
1. Azerbaijan State Oil and Industry University, 34 Azalig ave., Baku, Az-1010, Azerbaijan
2. Azerbaijan State University of Economics, 6 Istiglaliyyat Str., Baku, AZ-1123, Azerbaijan
E-mail: vcafarova@beu.edu.az, sevda_rzayeva@unec.edu.az

Graphics and Images

        

      Fig.1-2

[1]   S. Dai, G. Feng, Y. Zhang, L. Deng, H. Zhang, S. Zhou.The effects of the impurity distribution on the electrical and optical properties of Cr2+: ZnSe nanowires: First-principles study. Results in Physics 8 2018, 628.
[2]   S.B. Mirov, V.V. Fedorov, D. Martyshkin, I.S. Moskalev, M. Mirov, and S. Vasilyev. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides, IEEE J. Sel. Top. Quantum Electron. 21 2015. 292.
[3]   O.Cheref, F. Dahmane, S. Benalia, D. Rached, M. Mokhtari, L. Djoudi, M. Merabet, N. Bettahar. First-principles study of half-metallic properties in
X2VSi (X = Ti, Co) and their quaternary TiCoVSi and CoTiVSi compounds. Comput. Condens. Matter. 19 (2019) e00369.
[4]   S.A. Wolf, D.D. Awschalom, R.A. Buhrman, M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger. Spintronics: a spin-based electronics vision for the future, Science 294. 2001. 1488.
[5]   K. Sato, H. Katayama-Yoshida. Materials Design of Transparent and Half-Metallic Ferromagnets in V- or Cr-Doped ZnS, ZnSe and ZnTe without P- or N-type Doping Treatment, Jpn. Appl. Phys. 40. 2001. L651.
[6]   S.Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. van Schilfgaarde, M.R. McCartney, D.J. Smith, N. Newman. Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 82. 2003. 3047.
[7]   M. Behloul, E. Salmani, H. Ez-Zahraouy, A. Benyoussef. Theoretical investigation of electronic, magnetic and optical properties of ZnSe doped TM and co-doped with MnTM (TM: Fe, Cr, Co): AB-initio study, J. Magn. and Magn. Mater. 419. 2016. 233.
[8]   R.A. Stern; T.M. Schuler; J. M. MacLaren; D.L. Ederer; V. Perez-Dieste; F.J. Himpsel. Calculated half-metallic behavior in dilute magnetically doped ZnS, Appl. Phys. 95. 2004. 7468.
[9]   J. Blinowski, P. Kacman, J.A. Majewski. Ferromagnetic superexchange in Cr-based diluted magnetic semiconductors. Phys. Rev. B 53. 1996. 9524.
[10]  V.I. Maksimov, S.F. Dubinin, and T.P. Surkova. Superstructure of atomic displacements in cubic compounds Zn0.9Ni0.1S and Zn0.7Ni0.3O. Phys. Solid State 56. 2014. 2393.
[11]  Xin-feng Ge, Yuan-min Zhang. First-principles study of half-metallic ferromagnetism in Zn1-xCrxSe, J. Magn. Magn. Mater. 321(3). 2009. 198-202.
[12]  B. Xiao, M. Zhu, B. Zhang, J. Dong, L. Ji, H. Yu, X. Sun, W. Jie, and Y. Xu. Optical Materials Express. 8. 2018. 431.
[13]  W. Benstaali, S. Bentata, A. Abbad, A. Belaidi. Mater. Sci. Semicond. Process. 16. 2013. 231.
[14]  C. Kim, D.V. Martyshkin, V.V. Fedorov, S.B. Mirov. Optics Commun. 282. 2009. 2049.
[15]  J.E. Williams, V.V. Fedorov, D.V. Martyshkin, I.S. Moskalev, R.P. Camata, S.B. Mirov. Optics Express 18. 2010. 25999.
[16]  N. Myoung, D.V. Martyshkin, V.V. Fedorov, S.B. Mirov. Optics Letters 36. 2011. 94.
[17]  V.N. Jafarova, H.S. Orudzhev. Sol. State Commun. 325. 2021. 114166.