CHRONOLOGY AND FUTURE PROSPECTS OF SOLAR CELL
A.V. Gadirova, S.X. Mammadova, S.G. Nuriyeva
2025   01   az   p.06-10

ABSTRACT

The production of new materials for solar cells has always interested researchers, as the synthesis, investigation, and application of materials with long-term stability, high energy efficiency, high photon absorption, and easy electron transfer are considered current directions. In the review article, the solar cells relevant for each period were analyzed, and their efficiency, base elements, preparation technologies, and shortcomings were emphasized. The selection of superior materials in the most relevant solar cells for prospects was highlighted.

Keywords: generations of solar cells, efficiency, nanomaterials.
DOI:10.70784/azip.2.2025106

Received: 25.12.2024
Internet publishing: 16.01.2025

AUTHORS & AFFILIATIONS

Baku State University, Nano Research Laboratory
E-mail: aytacqedkrova@gmail.com

Graphics and Images

          

        Fig.1-2

[1]   G.M. Wilson, M. Al-Jassim, W.K. Metzger, S.W. Glunz, P. Verlinden, G. Xiong, L.M. Mansfield, B.J. Stanbery, K. Zhu, YaY. J.Phys.Appl.Phys., The 2020 photovoltaic technologies roadmap. 2020;53:493001.doi: 10.1088/13616463/ab9c6a.
[2]   Justyna Pastuszak, Paweł Węgierek. Photovoltaic Cell Generations and Current Research Directions for their development.Materials 2022, 15(16),5542; https://doi.org/10.3390/ma15165542].
[3]   M.V. Dambhare, B. Butey, S.V.J. Moharil, Solar photovoltaic technology: A review of different types of solar cells and its future trendsPhys.Conf. Ser.2021;1913:012053.doi:10.1088/17426596/1913/1/012053.
[4]   P.G. Sampaio, M.O. González. Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews. 2017;74:590-601.
[5]   Muhammad Aamir Iqbal, Maria Malik, Wajeehah Shahid, Syed Zaheer Ud Din, Nadia Anwar, Mujtaba Ikram and Faryal Idrees Materials for Photovoltaics: Overview, Generations, Recent Advancements, and Future Prospects, DOI: 10.5772/intechopen.101449
[6]   Neeraj Kant, Pushpendra Singh. Review of next-generation photovoltaic solar cell technology and comparative materialistic development https://doi.org/10.1016/j.matpr.2021.11.116
[7]   A.M. Kuhlmann. The second most abundant element in the earth’s crust. Journal of Metals1963;15(7):502-505
[8]   Thejo Kalyani, S.J. Dhoble, B.Vengadaesvaran, Abdul Karim Arof. Chapter 20 - Sustainability, recycling, and lifetime issues of energy materials, https://doi.org/10.1016/B978-0-12-823710-6.00015-7
[9]   Francesco Calise, Massimo Dentice D'Accadia, Massimo Santarelli, Andrea Lanzini, Domenico Ferrero, Solar Hydrogen Production, Processes, Systems and Technologies 2019, Pages 559-567
[10]  Mehmet Emin Meral, Furkan Dinçer, Renewable and Sustainable Energy Reviews, June 2011, 10.1016/j.rser.2011.01.010
[11]  A.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust. Geochemistry International, 44 (1), 48-55. (2006).
[12]  M. Nayeripour, M. Mansouri, F. Orooji, E. Waffenschmidt, Solar Cells; IntechOpen Limited: London, UK, 2020; pp. 1–50.
[13]  Mugdha V Dambhare et al., Solar photovoltaic technology: A review of different types of solar cells and its future trends 2021 J. Phys.: Conf. Ser. 1913 012053, 10.1088/1742-6596/1913/1/012053
[14]  K. Zweibel, Thin films: Past, present and future Photo-volt-3, 279 1995
[15]  M.A. Green, Y. Hishikawa, E. Dunlop, D. Levi, J. Hohl-Ebinger, M. Toshita, A.WY. Ho-Baillie, Solar cell efficiency tables (version 53). Prog. Photovolt. Res. Appl. 2018, 27.
[16]  Vincenzo Muteri, Maurizio Cellura, Domenico Curto, Vincenzo Franzitta, Sonia Longo , Marina Mistretta and Maria Laura Parisi, Review on Life Cycle Assessment of Solar Photovoltaic Panels
[17]  X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 2004, 77, 803–814.
[18]  X.X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Züttel, M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells. Adv. Mater. 2020, 32, 1905502.
[19]  N. Shah, A. A. Shah, P. K. Leung, S. Khan, K. Sun, X. Zhu, Q. Liao, A Review of Third Generation Solar Cells
[20]  N. Jamalullail, I. Smohamad, M. Nnorizan, and N. Mahmed Enhancement of Energy Conversion Efficiency for Dye-Sensitized Solar Cell Using Zinc Oxide Photoanode
[21]  Yang Yang, MinhTam Hoang, Aman Bhardwaj, Michael Wilhelm, Sanjay Mathur, Hongxia Wang, Perovskite solar cells based self-charging power packs: Fundamentals, applications, and challenges
[22]  P. Basumatary, P. Agarwal, A short review of progress in perovskite solar cells. Mater. Res. Bull. 2022, 149, 111700
[23]  D. Sharma, R. Mehra, B. Raj, Design and comparative analysis of various planar perovskite solar cells through numerical simulation using different HTLs to improve efficiency. Opt. Mater. 2022, 126, 112221
[24]  A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
[25]  D. Bera, L.Qian, T.-K.Tseng, P.H. Holloway, Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345.
[26]  S. Das, D.Pandey, J.Thomas, T. Roy, The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 2019, 31, 1802722.
[27]  Yuanhang Cheng, Liming Ding, Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications, September 2021, 10.1002/sus2.25
[28]  Colin Klinger, Yogeshwari Patel, W.Ch. Henk, Carbon Nanotube Solar Cells, 10.1371/journal.pone.0037806
[29]  Y. Wang, X. Chen, Y. Zhong, F. Zhu, K.P. Loh, Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 2009, 95, 209.