ABSTRACT
Sericin protein interacts specifically with the Rhodamine 6G laser dye to produce a hypochromic effect. Circular dichroism spectroscopy shows induced optical activity in
Rhodamine 6G. Thus, sericin protein can be used not only as a structural biomaterial, but also as an optical matrix in laser dye. The results indicate that sericin protein
will play an important role in the future as a biomaterial, in optoelectronics, and in biophotonics.
Keywords: silk fibroin, sericin, Rhodamine 6G, hypochromic effect, spectrometer, circular dichroism.
DOI:10.70784/azip.2.2025321
Received: 14.09.2025
Internet publishing: 06.10.2025 AJP Fizika A 2025 03 az p.21-25
AUTHORS & AFFILIATIONS
Institute of Biophysics Ministry of Science and Education Republic of Azerbaijan, 117 Z. Khalilov street, Baku, Azerbaijan
E-mail: a.k134@hotmail.com
Graphics and Images
Fig.1-2-3
|
[1] F.J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater. Today, vol. 14, № 3, pp. 88–95, 2011, doi: 10.1016/S1369-7021(11)70058-X.
[2] M. Tsukada, T. Komoto, and T. Kawai, “Conformation of liquid silk sericin,” 1979. doi: 10.1295/polymj.11.503
[3] J.T. B Shaw and & S.G. Smith, “Amino-acids of Silk Sericin.pdf,” 1951.
[4] R.I. Kunz, R.M. C. Brancalhão, L.D.F.C. Ribeiro, and M.R.M. Natali, “Silkworm Sericin: Properties and Biomedical Applications,” Biomed Res. Int., vol. 2016, 2016, doi: 10.1155/2016/8175701.
[5] P. Mandal, M. Bardhan, and T. Ganguly, “A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin,” J. Photochem. Photobiol. B Biol., vol. 99, № 2, pp. 78–86, 2010, doi: 10.1016/j.jphotobiol.2010.02.009
[6] P. Mandal, M. Bardhan, and T. Ganguly, “Spectroscopic investigations to reveal the nature of interactions between the haem protein myoglobin and the dye rhodamine 6G,” Luminescence, vol. 27, № 4, pp. 285–291, 2012, doi: 10.1002/bio.1348.
[7] P. Rao and S. D. George, “Optical spectroscopic probing of the interaction of graphene oxide-Au composite and Rhodamine 6G,” J. Mol. Struct., vol. 1334, no. July 2024, p. 141825, 2025, doi: 10.1016/j.molstruc.2025.141825.
[8] O.K. Gasymov, C. Botta, L. Ragona, A.J. Guliyeva, and H. Molinari, “Silk Fibroin-Based Films Enhance Rhodamine 6G Emission in the Solid State: A Chemical-Physical Analysis of their Interactions for the Design of Highly Emissive Biomaterials,” Macromol. Chem. Phys., vol. 220, № 4, 2019, doi: 10.1002/macp.201970007.
[9] S. Tomaselli et al., “Encapsulation of a rhodamine dye within a bile acid binding protein: Toward water processable functional bio host-guest materials”, Biomacromolecules, vol. 14, № 10, pp. 3549–3556, 2013, doi: 10.1021/bm400904s.
[10] A.C. Məmmədova (Guliyeva) "Rodamin 6G lazer rənginin ipək fibroini təbəqəsində zülal agregasiyasina təsiri: SEM strukturun analizi" AJP Fizika, volume XXXI № 2, section:A doi: 10.70784/azip.2.2025251.
[11] J. Gawroński and J. Grajewski, “The significance of induced circular dichroism,” Org. Lett., vol. 5, № 18, pp. 3301–3303, 2003, doi: 10.1021/ol0352456.
[12] J. Passent, “The molecular weight of sericin,” BBA - Protein Struct., vol. 147, № 3, pp. 595–597,1967, doi: 10.1016/0005-2795(67)90021-9.
[13] R.F. Yunus, Y. M. Zheng, K.G.N. Nanayakkara, and J.P. Chen, “Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA,” Ind. Eng. Chem. Res., vol. 48, № 16, pp. 7466–7473, 2009, doi: 10.1021/ie801719b.
[14] A.Al Masum et al., “Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies,” J. Photochem. Photobiol. B Biol., vol. 164, pp. 369–379, 2016, doi: 10.1016/j.jphotobiol.2016.10.002.
[15] L. Ragona et al., “Rhodamine binds to silk fibroin and inhibits its self-aggregation,” Biochim. Biophys. Acta - Proteins Proteomics, vol. 1866, № 5–6, pp. 661–667, 2018, doi: 10.1016/j.bbapap.2018.03.009.
[16] R. Aad, I. Dragojlov, and S. Vesentini, “Sericin Protein: Structure, Properties, and Applications,” J. Funct. Biomater., vol. 15, № 11, 2024, doi: 10.3390/jfb15110322.
[17] G.D Fasman,. Circular dichroism and the conformational analysis of biomolecules. Plenum Press, 1996.
|