STUDY OF THE EFFECT OF GAMMA QUANTA ON THE STRUCTURE AND DEFECT FORMATION MECHANISM OF La2Ti2O7 CERAMIC COMPOUND
A.G. Asadova,b,c, R.Z. Mehdievaa, E.R. Huseynovaa, A.I. Mammadova, M.N. Nasrabadif,b, A.A. Sidorinb, M. Hoseinig, E.D. Mustafayevd,
A.S. Abiyevb,e, S.F. Samadovb,d,e
   download pdf   

ABSTRACT

In this work, the effect of gamma quanta on the structure and defect formation mechanism of La2Ti2O7 ceramic compound have been investigated. X-ray diffraction (XRD), Raman spectroscopy, Gamma radiation, Positron Annihilation Lifetime Spectroscopy and simulations were carried out for the structural analysis. In our research, positron annihilation lifetime studies of the La2Ti2O7 compound were performed following irradiation with gamma quanta at absorption doses of 0, 500 and 1000 kGy and it was observed that each sample exhibited two distinct lifetime components, designated as τ1 and τ2. After the influence of the gamma quantum, an increase in the value of all lifetime components is observed. Gamma radiation induces defects and structural changes that affect the positron annihilation process. The theoretical calculation of gamma radiation damage has also been investigated with GAMMATRACK program.

Keywords: La2Ti2O7, gamma quantum, simulation, PALS, defect
DOI:10.70784/azip.2.2025326

Received: 26.09.2025
Internet publishing: 06.10.2025    AJP Fizika A 2025 03 az p.26-32

AUTHORS & AFFILIATIONS

a. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave, Baku, AZ-1073, Azerbaijan
b. International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna, 141980, Russia
c. Khazar University, AZ1096, Baku, Azerbaijan
d. Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, АZ1143, Azerbaijan
e. Western Caspian University, AZ1001 Baku, Azerbaijan
f. Faculty of Physics, University of Isfahan, 81746-73441, Isfahan, Iran
g. Department of Physics, Arak University, P.O. Box 38156, Arak, Iran
e. Azerbaijan University of Architecture and Construction, Baku, AZ1073, Azerbaijan
E-mail:

Graphics and Images

               

     Fig.1-2-3        Fig.4-5

[1]   X. Lin, H. Wang, H. Du, X. Xiong, B. Qu, Z. Guo, D. Chu. Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries, ACS Appl Mater Interfaces 8, 2016, 486–1492. https://doi.org/10.1021/ACSAMI.5B10877.
[2]   M. Haydoura, R. Benzerga, C. Le Paven, L. Le Gendre, V. Laur, A. Chevalier, A. Sharaiha, F.Tessier, F. Cheviré. Perovskite (Sr2Ta7O7)100−x(La2Ti2O7)x ceramics: From dielectric characterization to dielectric resonator antenna applications, J Alloys Compd 872, 2021. https://doi.org/10.1016/J.JALLCOM.2021.159728.
[3]   E.İ. Şahin, S.B. Cantürk, M. Emek, S. Genç, M. Kartal. Ceramic Processing Research Production and microwave electromagnetic shielding effectiveness of polyaniline-La2Ti2O7:Er,Yb composites, Journal of Ceramic Processing Research 22, 2021, 208–213. https://doi.org/10.36410/jcpr.2021.22.2.208.
[4]   K.R. Kambale, A.R. Kulkarni, N. Venkataramani, A. Vairagade, S. Butee. Synthesis of high Curie temperature La2Ti2O7 piezoceramic by mechanochemical activation: a preliminary investigation, Ceramic Transactions 266, 2019, 59–66. https://doi.org/10.1002/9781119631460.CH7.
[5]   A.G. Asadov, D.P. Kozlenko, A. Mammadov, R.Mehdiyeva, S.E. Kichanov, E.V. Lukin, O.N. Lis, A.V. Rutkauskas, A structural phase transition in La2Ti2O7 at high pressure, Physica B Condens Matter 655, 2023, 414753. https://doi.org/10.1016/J.PHYSB.2023.414753.
[6]   F.T. Huang, B. Gao, J.W. Kim, X. Luo, Y. Wang, M.W. Chu, C.K. Chang, H.S. Sheu, S.W.Cheong. Topological defects at octahedral tilting plethora in bi-layered perovskites, Npj Quantum Materials 2016 1:1 1, 2016, 1–6. https://doi.org/10.1038/npjquantmats.2016.17.
[7]   S.R. Spurgeon, T.C. Kaspar, V. Shutthanandan, J. Gigax, L. Shao, M. Sassi, S.R. Spurgeon, T.C. Kaspar, M. Sassi, V. Shutthanandan, J. Gigax, L. Shao. Asymmetric Lattice Disorder Induced at Oxide Interfaces, Adv Mater Interfaces 7, 2020. 1901944. https://doi.org/10.1002/ADMI.201901944.
[8]   J. Dryzek, K. Siemek. Positron Annihilation Studies of Subsurface Zone Created during Friction in Pure Silver, Tribology Transactions 62, 2019, 658–666. https://doi.org/10.1080/10402004.2019.1600769.
[9]   J. Kansy. Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl Instrum Methods Phys Res A 374, 1996, 235–244. https://doi.org/10.1016/0168-9002(96)00075-7.
[10]  M.J. Puska, R.M. Nieminen. Theory of positrons in solids and on solid surfaces, Rev Mod Phys 66, 1994, 841. https://doi.org/10.1103/RevModPhys.66.841.
[11]  M.N. Mirzayev, B.A. Abdurakhimov, E. Demir, A.A. Donkov, E. Popov, M.Y. Tashmetov, I.G. Genov, T.T. Thabethe, K. Siemek, K.Krezhov, F. Mamedov, D.M. Mirzayeva, M.V. Bulavin, V.A. Turchenko, T.X. Thang, T.Z. Abdurakhmonov, P. Horodek. Investigation of the formation of defects under fast neutrons and gamma irradiation in 3C–SiC nano powder, Physica B Condens Matter 611, 2021, 412842. https://doi.org/10.1016/J.PHYSB.2021.412842.
[12]  Y.Q. Chen, Y.C. Wu, Z. Wang, S.J. Wang. Positron annihilation study on interaction between hydrogen and defects in AISI 304 stainless steel, Radiation Physics and Chemistry 76, 2007, 308–312. https://doi.org/10.1016/J.RADPHYSCHEM.2006.03.057.
[13]  S. Chakrabarti, S. Chaudhuri, P.M.G. Nambissan. Positron annihilation lifetime changes across the structural phase transition in nanocrystalline Fe2O3, Phys Rev B Condens Matter Mater Phys 71, 2005, 064105. https://doi.org/10.1103/PHYSREVB.71.064105/FIGURES/9/MEDIUM.
[14]  J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Physical Chemistry Chemical Physics 2 (2000) 1319–1324. https://doi.org/10.1039/A908800H.
[15]  K. Siemek, A. Olejniczak, L.N. Korotkov, P. Konieczny, A. V. Belushkin. Investigation of surface defects in BaTiO3 nanopowders studied by XPS and positron annihilation lifetime spectroscopy, Appl Surf Sci 578, 2022, 151807. https://doi.org/10.1016/J.APSUSC.2021.151807.
[16]  J.M. Campillo Robles, E. Ogando, F. Plazaola. Positron lifetime calculation for the elements of the periodic table, Journal of Physics: Condensed Matter 19, 2007, 176222. https://doi.org/10.1088/0953-8984/19/17/176222.
[17]  D.J. Keeble, S. Singh, R.A. Mackie, M. Morozov, S. McGuire, D. Damjanovic. Cation vacancies in ferroelectric PbTi O3 and Pb (Zr,Ti) O3: A positron annihilation lifetime spectroscopy study, Phys Rev B Condens Matter Mater Phys 76. 2007, 144109. https://doi.org/10.1103/PHYSREVB.76.144109/FIGURES/4/MEDIUM.
[18]  J. Kansy, T. Suzuki. Delayed formation and localisation of positronium in polymers at low temperatures, Radiation Physics and Chemistry 76, 2007, 759–765. https://doi.org/10.1016/J.RADPHYSCHEM.2006.10.005.
[19]  S.J. Tao. Positronium Annihilation in Molecular Substances, J Chem Phys 56, 1972, 5499–5510. https://doi.org/10.1063/1.1677067.
[20]  M. Eldrup, D. Lightbody, J.N. Sherwood. The temperature dependence of positron lifetimes in solid pivalic acid, Chem Phys 63, 1981, 51–58. https://doi.org/10.1016/0301-0104(81)80307-2.
[21]  R. Zaleski. Principles of positron porosimetry, Nukleonika 60, 2015, 795–800. https://doi.org/10.1515/NUKA-2015-0143.