CONTROLLED SURFACE LOCALIZED PLASMON RESONANCE IN LIQUID CRYSTAL - SILVER NANOPARTICLE COLLOID
A.R. Imamaliyev1, G.F. Ganizade1, Z.I. Budagov2, G.M. Muradova1,
   download pdf   

ABSTRACT

This work investigates localized surface plasmon resonance (LSPR) in a colloid consisting of silver particles with a size of 80–100 nm and a liquid crystal with negative dielectric anisotropy. For a 50 μm thickness cell of and homotropic orientation, the SPR absorption peak is in the red region of the spectrum
(678 nm). Using an electric field, it is possible to shift the peak toward the long-wave side. For example, when 9 V is applied to the cell, the maximum absorption peak occurs at 698 V. The shift of the LPPR peak is explained by the rotation of liquid crystal molecules around silver particles under the action of an electric field.

Keywords: liquid crystal, silver nanoparticle, plasmon resonance, UV-visible spectrum, dielectric permittivity
DOI:10.70784/azip.2.2025333

Received: 29.09.2025
Internet publishing: 06.10.2025    AJP Fizika A 2025 03 az p.33-37

AUTHORS & AFFILIATIONS

1. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave, Baku, AZ-1073, Azerbaijan
2. Azerbaijan-French University under the Azerbaijan State Oil and Industry University 183 Nizami St., Baku
E-mail: Rahimoglu1960@gmail/com

Graphics and Images

       

     Fig.1-2-3-4

[1]   J.S. Blakemore, Solid State Physics, Cambridge University Press, 2nd Ed, 1985, 507 p
[2]   Handbook of Surface Plasmon Resonance, Ed. by R.B.M. Schasfoort, 2nd Ed, The Royal Society of Chemistry, 2017, 554 pp.
[3]   K. Ideta, T. Arakawa, Surface plasmon resonance study for the detection of some chemical species, Sensors and Actuators B: Chemical, V. 13, 1–3, 1993, 384-386
[4]   K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, v.58, p.267–297
[5]   I. Yakovkin, V. Reshetnyak, Controlling plasmonresonance of gold and silver nanoparticle arrays with help of liquid crystal, Photonics, 2023, v.10, 1088-1100
[6]   L. Mahmudin, E. Suharyadi, A. Bambang, S. Utomo, K. Abraha, Optical properties of silver nanoparticles for surface plasmonresonance (SPR)-based biosensor applications, Journal of Modern Physics, 2015, v.6, 1071-1076
[7]   K. Shrivas, S. Sahu, G.K. Patra, N.K. Jaiswal and R. Shankar, Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples, Analytical Methods, Royal Society of Chemistry, 2016, v. 8, 2088–2096
[8]   X.F. Zhang, Zh.G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, International Journal of Molecular Science, 2016, v.17, p.1534-1567
[9]   A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday, Silver-based plasmonicnanoparticles for and their use in biosensing, Biosensors, 2019, v.9, p.78-117
[10]  Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, I.I. Smalyukh, Metal nanoparticle dispersion, alignment, and assembly in nematicliquid crystals for applications in switchable plasmoniccolor filters and E polarizers, ACS Nano, 2015, v.9, № 3, p.3097-3108
[11]  T. Miyama, H. Shiraki, Y. Sakai, T. Masumi, S. Kundu, Y. Shiraishi, N. Toshima, S. Kobayashi, Dielectric properties and electro-optic characteristics of TN-LCDs doped with metal nanoparticles exhibiting Frequency modulation response accompanying fast response, Molecular Crystals and Liquid Crystals, 2005, v.433, № 1, p.29-40
[12]  J. Niedziółka-Jönsson, S. Mackowsk, Plasmonics with metallic nanowires, Materials, 2019, v.12, № 9, 1418-1438
[13]  X. Li, Ch. Yang, Q. Wang, D. Jia, L. Hu, Z. Peng, L. Xuan, Enhanced birefringence for metallic nanoparticle doped liquid crystals, Optics Communications, 2013, v.286, 224–227
[14]  Y-Y. Jiang, J.Li,L-Y.Huang, Beam coupling characteristics innematic liquid crystal doped withsilver nanoparticles, Journal of Nonlinear Optical Physics & Materials, 2008, v. 17, № 4, 377–385
[15]  L.M. Blinov, V.G. Chigrinov, Electro-optic effects in liquid crystal materials, Springer-Verlag, New York, Inc.,1994, 475p.
[16]  K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, London and New York, 2005, 269p.