AJP Fizika E
Institute of Physics
Ministry of Science and Education
Republic of Azerbaijan
ISSN 1028-8546
Azerbaijan Journal of Physics
Published from 1995. Registration number: 514, 20 02 1995
Ministry of Press and Information of Azerbaijan Republic
2021 01 en p.29-32 | Sh.M. Nagiyev, Limit relation between pseudo Jacobi polynomials and Hermit polynomials with a shifted argument |
ABSTRACT In this paper, we prove a new limit relation between the pseudo-Jacobi polynomials and Hermite polynomials with shifted argument. Keywords: new generalized Hamiltonian, pseudo-Jacobi polynomials, Hermite polynomials. PACS: 02.30.Gp Special functions. Received: 08.02.2021 AUTHORS & AFFILIATIONS Institute of Physics of ANAS, AZ1143, H. Javid ave., 131, Baku, Azerbaijan E-mail: |
REFERENCIES [1] Sh. M. Nagiyev, K. Sh. Jafarova. Generalized Hamiltonian with position-dependent mass and pseudo-Jacobi oscillator, AJP Fizika, 2021, vol. XXVII: 1. [2] J.-M. Levy-Leblond. ”Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 1995, 52, 1845–1849. [3] O. von Roos. ”Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 1983, 27, 7547–7551. [4] A.R. Plastino, A. Rigo, M. Casas, F. Garcias and A. Plastino. ”Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60, 1999, 4318–4325. [5] C. Quesne and V.M. Tkachuk. ”Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37, 2004, 4267–4281. [6] J. Yu, S.-H. Dong, Exactly solvable potentials for the Schrödinger equation with spatially dependent mass, Phys. Lett. A 325, 2004, 194–198. [7] M.L. Cassou, S.-H. Dong, J. Yu. Quantum features of semiconductor quantum dots, Physics Letters A 331, 2004, 45–52. [8] B. Roy. Lie algebraic approach to singular oscillator with a position-dependent mass Europhys. Lett., 2005, 72 (1), pp. 1–6. [9] A.G.M. Schmidt. Wave-packet revival for the Schrödinger equation with position-dependent mass, Phys. Lett. A 353, 2006, 459–462. [10] A de Souza Dutra, A de Oliveira. Two-dimensional position-dependent massive particles in the presence of magnetic fields, J. Phys. A: Math. Theor. 42, 2009, 025304 (13pp). [11] G. Levai, O. Ozer. An exactly solvable Schrödinger equation with finite positive position-dependent effective mass, J. Math. Phys. 51, 2010, 092103. [12] A. Arda, R. Sever, Bound State Solutions of Schr¨odinger Equation for Generalized Morse Potential with Position-Dependent Mass, Commun. Theor. Phys. 56, 2011, 51–54. [13] H. Rajbongshi. ”Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrodinger equation in D-dimensional space”, Theor. Math. Phys., 2015, 184, 996–1010. [14] N. Amir, S. Iqbal. Algebraic solutions of shape-invariant position-dependenteffective mass systems, J.Math.Phys. 2017, 57, 465202. [15] E.I. Jafarov, S.M. Nagiyev, R. Oste and J. Van der Jeugt. Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter, Journal of Physics A: Math.Theor. [16] E.I. Jafarov, S.M. Nagiyev, A.M. Jafarova. Quantum-mechanical explicit solution for the confined harmonic oscillator model with the Von Roos kinetic energy operator, Reports on Mathematical Physics, Vol. 86: 1, 2020, 25-37. [17] E.I. Jafarov, S.M. Nagiyev, A.M. Seyidova. Zhu-Kroemer kinetic energy operator with position-dependent effective mass and exact solution of the non-relativistic confined harmonic oscillator model. AMEA-nın Xəbərləri, Fiz.-texn., riyaz. Ser., fizika və astronomiya № 2, 2020, 3-14. [18] H. Bateman and A. Erd´elyi. Higher Transcendental Functions: Vol. 2, McGraw Hill Publications, New York, 1953. [19] R. Koekoek, P.A. Lesky and R.F. Swarttouw. Hypergeometric Orthogonal Polynomials and their q-Analogues, Springer, Berlin 2010. |