2021   01   en   p.29-32 Sh.M. Nagiyev,
Limit relation between pseudo Jacobi polynomials and Hermit polynomials with a shifted argument
 pdf 

ABSTRACT

In this paper, we prove a new limit relation between the pseudo-Jacobi polynomials and Hermite polynomials with shifted argument.

Keywords: new generalized Hamiltonian, pseudo-Jacobi polynomials, Hermite polynomials.
PACS: 02.30.Gp Special functions.

Received: 08.02.2021

AUTHORS & AFFILIATIONS

Institute of Physics of ANAS, AZ1143, H. Javid ave., 131, Baku, Azerbaijan
E-mail:
REFERENCIES

[1]   Sh. M. Nagiyev, K. Sh. Jafarova. Generalized Hamiltonian with position-dependent mass and pseudo-Jacobi oscillator, AJP Fizika, 2021, vol. XXVII: 1.
[2]   J.-M. Levy-Leblond. ”Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 1995, 52, 1845–1849.
[3]   O. von Roos. ”Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 1983, 27, 7547–7551.
[4]   A.R. Plastino, A. Rigo, M. Casas, F. Garcias and A. Plastino. ”Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60, 1999, 4318–4325.
[5]   C. Quesne and V.M. Tkachuk. ”Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37, 2004, 4267–4281.
[6]   J. Yu, S.-H. Dong, Exactly solvable potentials for the Schrödinger equation with spatially dependent mass, Phys. Lett. A 325, 2004, 194–198.
[7]   M.L. Cassou, S.-H. Dong, J. Yu. Quantum features of semiconductor quantum dots, Physics Letters A 331, 2004, 45–52.
[8]   B. Roy. Lie algebraic approach to singular oscillator with a position-dependent mass Europhys. Lett., 2005, 72 (1), pp. 1–6.
[9]   A.G.M. Schmidt. Wave-packet revival for the Schrödinger equation with position-dependent mass, Phys. Lett. A 353, 2006, 459–462.
[10]  A de Souza Dutra, A de Oliveira. Two-dimensional position-dependent massive particles in the presence of magnetic fields, J. Phys. A: Math. Theor. 42, 2009, 025304 (13pp).
[11]  G. Levai, O. Ozer. An exactly solvable Schrödinger equation with finite positive position-dependent effective mass, J. Math. Phys. 51, 2010, 092103.
[12]  A. Arda, R. Sever, Bound State Solutions of Schr¨odinger Equation for Generalized Morse Potential with Position-Dependent Mass, Commun. Theor. Phys. 56, 2011, 51–54.
[13]  H. Rajbongshi. ”Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrodinger equation in D-dimensional space”, Theor. Math. Phys., 2015, 184, 996–1010.
[14]  N. Amir, S. Iqbal. Algebraic solutions of shape-invariant position-dependenteffective mass systems, J.Math.Phys. 2017, 57, 465202.
[15]  E.I. Jafarov, S.M. Nagiyev, R. Oste and J. Van der Jeugt. Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter, Journal of Physics A: Math.Theor.
[16]  E.I. Jafarov, S.M. Nagiyev, A.M. Jafarova. Quantum-mechanical explicit solution for the confined harmonic oscillator model with the Von Roos kinetic energy operator, Reports on Mathematical Physics, Vol. 86: 1, 2020, 25-37.
[17]  E.I. Jafarov, S.M. Nagiyev, A.M. Seyidova. Zhu-Kroemer kinetic energy operator with position-dependent effective mass and exact solution of the non-relativistic confined harmonic oscillator model. AMEA-nın Xəbərləri, Fiz.-texn., riyaz. Ser., fizika və astronomiya № 2, 2020, 3-14.
[18]  H. Bateman and A. Erd´elyi. Higher Transcendental Functions: Vol. 2, McGraw Hill Publications, New York, 1953.
[19]  R. Koekoek, P.A. Lesky and R.F. Swarttouw. Hypergeometric Orthogonal Polynomials and their q-Analogues, Springer, Berlin 2010.