2021   04   en   p.03-18 S.K. Abdullayev, M.Sh. Gojayev, A.K. Gulayeva,
Investigation of CP-odd asymmetries in muon colliders


In the framework of the Minimal Supersymmetric Standard Model, the CP-odd asymmetries in the process of fermionic pair generation in muon colliders are investigated: μ-μ+ƒƒ. Taking into account the arbitrary polarizations of the muon-antimuon and fermion-antifermion pairs, a general expression for the effective cross-section of the process is obtained. Expressions are found for CP-odd asymmetries associated with the longitudinal and transverse polarizations of the muon-antimuon pair, as well as the degrees of longitudinal (transverse) polarization of the fermion and antifermion. Studying these characteristics can provide valuable information about the nature of the Higgs boson.

Keywords: muon-antimuon pair, Minimal Supersymmetric Standard Model, Higgs boson, degree of longitudinal (transverse) polarization, longitudinal (transverse) spin asymmetry, top quark.
PACS: 12.15.-y, 12.60.-i, 14.60.Ef, 14.65.Ha.


Received: 14.09.2021


Baku State University, Azerbaijan, AZ 1148, Baku, st. Z. Khalilova, 23,
E-mail: m_qocayev@mail.ru

[1]   ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC // Phys. Letters, 2012, B716, p. 1-29.
[2]   CMS Collaboration. Observation of a new boson at mass of 125 GeV with the CMS experiment at the LHC // Phys. Lett., 2012, B716, p.30-60.
[3]   V.A. Rubakov. On Large Hadron Colliders discovery of a new particle with Higgs Boson properties // UFN, 2012, v.182, No 10, p.1017-1025 (in Russian).
[4]   A.V. Lanev. CMS Collaboration results: Higgs boson and search for new physics // UFN, 2014, v. 184, № 9, p. 996-1004 (In Russian).
[5]   D.I. Кazakov. The Higgs boson is found: what is next? // UFN, 2014, v. 184, № 9, p. 1004-1017 (In Russian).
[6]   P.W. Higgs. Broken symmetries, massless particles and gauge fields // Phys. Lett., 1964, v. 12, p.132.
[7]   P.W. Higgs. Broken symmetries and the masses of gauge bosons // Phys. Rev. Lett., 1964, v. 13, № 16, p.508.
[8]   F. Englert, F. Brout. Broken symmetry and the mass of gauge vector mesons // Phys. Rev. Lett., 1964, v. 13, № 9, p.321.
[9]   A. Djouadi. The Anatomy of Electro-Weak Symmetry Breaking. Tome II: The Higgs boson in the Minimal Supersymmetric Standard Model.
arXiv: hep-ph /0503172v2, 2003; DOI: 10.1016/j.physrep. 2007.10.004.
[10]  J.F. Gunion, H.E. Haber. Higgs bosons in Supersymmetric models (I) // Nucl. Phys., 1986, v. B272, p. 1-76.
[11]  H.E. Haber, G. Kane. The search for supersymmetry: Probing physics beyond the Standard Model // Phys. Rep., 1985, v. C117, № 2-4, p. 75-263.
[12]  J.F. Gunion. Physics ata Muon Collider. arXiv: hep-ph/9802258, 1998, p. 23.
[13]  V.D. Shiltsev. High energy particle colliders: past 20 years, next 20 years and beyond // UFN, 2012, v. 182, № 10, p. 1033-1046 (in Russian).
[14]  K. Peters. Prospects for beyond Standard Model Higgs boson searches at future LHC runs and other machines. arXiv:1701.05124v.2 [hep-ex], 21 Feb. 2017, p. 9.
[15]  C.Blöchinger, M. Carena, J.Ellis. et al. Physics Opportunities at Higgs Factories. Report of the Higgs factory working group of the ECFA-CERN Study on Neutrino Factory, Muon Storage Rings at CERN.
[16]  "ILC Reference Design Report", ILC-Report-2007-001; http://www.linearcollider.org.
[17]  A.A. Sokolov, I.M. Ternov. Relyativistskiy electron, Moskva, "Nauka", 1974, p.392.
[18]  C. Partignani. et al. Review of Particle Physics // Chinese Physics, 2016, v. C40, № 10.
[19]  S.F. Hamilton. Measurement of the longitudinal polarization of the top-quark in top-antitop events using the ATLAS detector. CERN-THESIS – 2014-008.
[20]  S.K. Abdullayev. Standard Model, properties of leptons and quarks. Baku, Zeka Print, 2017, 276s.
[21]  S.K. Abdullayev, A.I. Mukhtarov. Superstring Z'-boson in -annihilation // Phys. Part. Nucl., 1995, v. 26, № 5, p. 527-552.