2022   04   en   p.36-41 Shakir M. Nagiyev, Shovqiyya A. Amirova,
Model of a linear harmonic oscillator with a position-dependent mass in the external homogeneous field. The case of a parabolic well
 pdf 

ABSTRACT

An exactly solvable model of a linear harmonic oscillator with position-dependent mass in the presence of an external uniform field is constructed. The interaction potential is an infinite parabolic well. It is shown that the system has only a discrete energy spectrum, and the number of levels is finite and depends on the modulus and sign of the force. The wave functions are expressed in terms of Laguerre polynomials.

Keywords: Harmonic oscillator; external homogeneous field; position-dependent mass.
PACS: 03.65.-w; 02.30. Hq; 03.65.Ge.

DOI:-

Received: 17.11.2022

AUTHORS & AFFILIATIONS

Institute of Physics, National Academy of Sciences of Azerbaijan H. Javid ave.131, AZ1143 Baku, Azerbaijan
E-mail:
REFERENCIES

[1]   D. J. Ben Daneil, C. B. Duke. Phys. Rev., 1966, 152, 2, pp.683–692.
[2]   O. Von Roos. Phys. Rev. 1983, B, 27, 12, pp.7547–7552.
[3]   T. Gora, F. Williams. Phys. Rev., 1969, 177, 3, pp.1179–1182.
[4]   Q.G. Zhu, H. Kroemer. Phys. Rev., 1983, B, 27, 6, pp. 3519–3527.
[5]   T.L. Li, K. J. Kuhn. Phys. Rev. 199, 3B, 47,19, pp.12760–12770.
[6]   G. Bastard. Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Les Ulis, 1988.
[7]   P. Harrison, A. Valavanis. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures., Wiley, Chichester, 2016.
[8]   M. Barranco, M. Pi, S.M. Gatica, E.S. Hern´andez, J. Navarro. Structure and energetics of mixed 4He-3He drops. Phys. Rev. 1997, B 56, pp.8997.
[9]   M.R. Geller, W. Kohn. Quantum mechanics of electrons in crystals with graded composition. Phys. Rev. Lett. 1993, 70, 3103.
[10]  F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini. Effective mass of one 4He atom in liquid 4He. Phys. Rev. 1994, B 50, 4248(R).
[11]  P. Ring, P. Schuck. The Nuclear Many Body Problem, Springer, New York, 1980.
[12]  D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne. Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential. Phys. Rev. 2011, C 83, 044321.
[13]  N. Chamel. Effective mass of free neutrons in neutron star crust. Nucl. Phys. 2006, A 773, 263.
[14]  A. de Souza Dutra. J. Phys. A: Math. Gen., 2006, 39:1, pp.203–208.
[15]  O. Mustafa, S.H. Mazharimousavi. Internat. J. Theor. Phys., 2007, 46:7, pp.1786–1796.
[16]  H. Rajbongshi, N.N. Singh. J. Modern Phys., 2013, 4:11, pp.1540–1545; Acta Phys. Polon., 2014, B, 45, 8, pp.1701–1712.
[17]  B. Gönül, O. Ozer, B. Gönül, F. Üzgün. Modern Phys. Lett. 2002, A, 17:37, pp.2453–2465, arXiv: quant-ph/0211113.
[18]  C. Tazcan, R. Sever. J. Math. Chem., 2007, 42, 3, pp.387–395.
[19]  C. Quesne. SIGMA, 2009, 5, 046, pp.17.
[20]  C. Quesne, V.M. Tkachuk. Deformed algebras, position-dependent effective mass and curved spaces: An exactly solvable Coulomb problem. J. Phys., 2004, A: Math. Gen. 37, pp.4267.
[21]  Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk. Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass. J. Phys., 2005, A: Math. Gen. 38, 2929.
[22]  C. Quesne. First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. 2006, NY, 321, pp.1221.
[23]   B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury. A general scheme for the effective-mass Schr¨odinger equation and the generation of the associated potentials. Mod. Phys. Lett. 2004, A 19, 2765.
[24]  L. Serra, E. Lipparini. Europhys. Lett., 1997, 40:6, pp.667–672.
[25]  F.A. de Saavedra, J. Boronat, A. Polls, A. Fabrocini. Phys. 1994, Rev. B, 50:6, pp.4248–4251, arXiv: cond-mat/9403075.
[26]  C. Quesne. Comment on ’Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter’. J. Phys. A: Math. Theor. 2021, 54, 368001.
[27]  C. Quesne. Generalized semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus., 2022, 137, 225.
[28]  C. Quesne. Point canonical transformation versus deformed shape invariance for position-dependent mass Schrödinger equations. 2009, SIGMA 5, 046.
[29]  E.I. Jafarov, S.M. Nagiyev, A.M. Jafarova. Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator. Rep. Math. Phys., 2020, 86, 25, 12.
[30]  E.I. Jafarov, S.M. Nagiyev, R. Oste, J. Van der Jeugt. Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter. J. Phys. 2020, A: Math. Theor. 53, 485301.
[31]  E.I. Jafarov, S.M. Nagiyev. Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a position-dependent mass in a uniform gravitational field. Theor. Math. Phys. 2021, 207, 447.
[32]  E.I. Jafarov, J. Van der Jeugt. Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus., 2021, 136, 758.
[33]  S.M. Nagiyev. On two direct limits relating pseudo-Jacobi polynomials to Hermite polynomials and the pseudo-Jacobi oscillator in a homogeneous gravitational field. Theor. Math. Phys. 2022, 210, 121.
[34]  S.M. Nagiyev, C. Aydin, A.I. Ahmadov, S.A. Amirova. Exactly solvable model of the linear harmonic oscillator with a position-dependent mass under external homogeneous gravitational field. Eur. Phys. J. Plus., 2022,137, 540,13.
[35]  E.I. Jafarov, S.M. Nagiyev. On the exactly-solvable semi-infinite quantum well of the non-rectangular step-harmonic profile. Quantum Stud. Math. Found., 2022, 9, pp.387-404. https://doi.org/10.1007/s40509-022-00275-z, arXiv:2111.04065.
[36]  C. Quesne. Semi-infinite quantum wells in a position-dependent mass background, arXiv:2210.15502 [quant-ph].
[37]  L. Dekar, L. Chetouani and T.F. Hammann. J. Math. Phys. 1998, 39, 2551.
[38]  A. R. Plastino, A. Rigo, M. Casas, F. Garcias, and A. Plastino. Phys. Rev., 1999, A 60, 4318.
[39]  J. Yu, S.-H. Dong.Phys. Lett., 2004, A 325, 194.
[40]  M. L. Cassou and S.-H. Dong, J. Yu. Physics Letters., 2004, A 331, 45.
[41]  B. Roy. Europhys. Lett., 2005,72, 1.
[42]  A. G.M. Schmidt. Phys. Lett., 2006, A 353, 459.
[43]  A. de Souza Dutra and A. de Oliveira. J. Phys. A: Math. Theor. 42, 025304 (2009).
[44]  G. Levai, O. Ozer. J. Math. Phys., 2010, 51, 092103.
[45]  L.D. Landau and E.M. Lifshitz. Quantum mechanics. Non-relativistic Theory (Oxford: Pergamon, 1991).
[46]  H. Bateman and A. Erd´elyi, Higher Transcendental Functions: 2 (McGraw Hill Publications, New York, 1953).
[47]  R. Koekoek, P.A. Lesky and R.F. Swarttouw. Hypergeometric Orthogonal Polynomials and their q-Analogues, (Springer, Berlin 2010).