ENERGY SPECTRUM OF ELECTRONS CONFINED TO A PARABOLIC QUANTUM WELL WITH CONICAL DISCLINATION AND RASHBA SPIN-ORBIT INTERACTION
A.M. Babanli1, B.G. Ibragimov2,3
2024   04   en   p.03-07

ABSTRACT

The present work investigates the effect of topological defects in quantum dots on the effective g*- factor. Using the energy spectrum, we derived the exact analytic expression for the effective g*-factor and studied the variation of the effective g*-factor with the disclination parameter. It was shown that, in the case of n=0,l=-1, as the magnetic field increases, the effective g*-factor changes sign and increases, approaching the value n=0,l=0. In the case of n=0,l=1, it decreases and approaches n=0,l=0. In the case of n=0,l=0, the effective g factor remains constant as the magnetic field changes.

Keywords: effective g*-factor, quantum dot,disclination.
DOI:10.70784/azip.1.2024403

Received: 17.10.2024
Internet publishing: 25.11.2024

AUTHORS & AFFILIATIONS

1. Department of Physics, Süleyman Demirel University, 32260 Isparta, Turkey
2. Azerbaijani-French University, 183 Nizami street, Baku, Azerbaijan
3. Institute of Physics, Ministry of Science and Education, Baku, Azerbaijan
E-mail: arifbabanli@sdu.edu.tr

Graphics and Images

         

  Fig.1-2-3-4

REFERENCIES

[1]   Y. Aharonov and Bohm. Phys. Rev. 115, 485, 1959.
[2]   Y. Aharonov and A. Casher. Phys. Rev. Lett. 53, 319, 1984.
[3]   Selma R. Vieira, Sérgio Azevedo. Physics Letters A 288, 2001, 29–32.
[4]   N. Candemir, A.N. Özdemir. Physics Letters A 492, 2023, 129226.
[5]   C. Furtado1, A. Rosas1 and S. Azevedo. EPL, 79, 2007, 57001 doi: 10.1209/0295-5075/79/57001
[6]   Francisco A.G. de Lira , Luís Fernando C. Pereira , Edilberto O. Silva. Physica E 158, 2024, 115898
[7]   Vitorio A.De Lorenci, Edisom S.Moreira. Jr. Phys.Lett.A 376, 2012, 2281-2282
[8]   A. Srivastava. “Topological defects in condensed matter physics,” in Field Theories in Condensed Matter Physics, Texts and Readings in Physical Sciences (Hindustan Book Agency, Gurgaon, 2001)].
[9]   A.S. Baimuratov, I.D. Rukhlenko, R.E. Noskov, P. Ginzburg, Y.K. Gun’ko, A.V. Baranov, A.V. Fedorov. Giant optical activity of quantum dots, rods, and disks with screw dislocations, Sci. Rep. 5 (1), 2015, 14712.
[10]  M.O. Katanaev, I.V. Volovich. Ann. Phys. (NY) 216, 1992, 1.
[11]  M.O. Katanaev. Theoretical and Mathematical Physics, 135(2): 733–744, 2003.
[12]  M.O. Katanaev. Physics - Uspekhi 48 (7) 675 – 701, 2005.
[13]  Jorge David Castaño-Yepes, D.A. Amor-Quiroz, C.F. Ramirez-Gutierrez, Edgar A. Gómez. Physica E 109, 2019, 56-76.
[14]  Tridev Mishra, Tapomoy Guha Sarkar, and Jayendra N. Bandyopadhyay. Phys.Rev E 89, 012103 (2014)
[15]  A.V. Rodina, Ai.L. Efros, M. Rosen, B.K. Meyer. Mater. Sci. Eng. C 19, 2002, 435.
[16]  S. Cakmak; A.M. Babayev, E. Artunç, A. Kökce, S. Cakmaktepe. Physica E 18, 2003, 365 – 371
[17]  O. Voskoboynikov, C.P. Lee, and O. Tretyak. Phys.Rev B 63, 165306